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Mechanical oscillators are present in almost every electronic device. They mainly consist of 
a resonating element providing an oscillating output with a specific frequency. Their ability to 
maintain a determined frequency  in a specified period of time is the most important parameter 
limiting their implementation. Historically, quartz crystals have almost exclusively been used as 
the resonating element, but micromechanical resonators are increasingly being considered to 
replace them. These resonators are easier to miniaturize and allow for monolithic integration with 
electronics. However, as their dimensions shrink to the microscale, most mechanical resonators 
exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we 
demonstrate that, by coupling two different vibrational modes through an internal resonance, 
it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical 
resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators 
capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators. 
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Mechanical oscillators are an essential component of prac-
tically every electronic system requiring a frequency ref-
erence for time keeping or synchronization1–3 and are 

also widely used in frequency-shift-based sensors of mass, force, 
and magnetic field4–7. Currently, micro- and nano-mechanical 
oscillators are being developed as an alternative to conventional 
oscillators, such as quartz oscillators, supported by their intrin-
sic compatibility with standard semiconductor processing and by 
their unprecedented sensitivity and time response as miniaturized 
sensing devices8,9. Unfortunately, as the dimensions of the vibrating 
structures are reduced to the micro- and nano-scale, their dynamic 
response at the amplitudes needed for operation frequently becomes 
nonlinear, with large displacement instabilities and excessive fre-
quency noise considerably degrading their performance10–13.

One of the simplest and most popular resonators used in micro- 
and nano-mechanical resonant sensors and frequency references is 
the clamped–clamped (c–c) beam resonator9,14. This type of struc-
ture simplifies fabrication at the nanoscale, allows Lorentz force 
actuation and electromotive detection, and has much higher resonant 
frequencies than other structures with similar dimensions9,15–17. On 
the other hand, a feature usually considered as a disadvantage of c–c 
beams is that they have a linear response only for oscillation ampli-
tudes that are small compared with their width18. This often limits 
the amplitude at which they are operated, reducing their dynamic 
range, power-handling capability, and signal-to-noise ratio19.  
Furthermore, when going from micro- to nano-electromechanical 
systems (MEMS to NEMS), the linear dynamic range can be reduced 
to the point where the amplitudes needed for lineal response are 
below the noise level and, as a consequence, operation in the non-
linear regime is unavoidable20. In this regime, unlike in the linear 
one, the resonant frequency has a strong dependence with the oscil-
lation amplitude, an effect similar to what in the quartz literature is 
known as the amplitude-frequency (a-f) effect19,21. Because ampli-
tude fluctuations translate into frequency fluctuations, the a-f effect 
increases considerably the frequency noise of the oscillator and, 
thus, the benefits of operating at higher amplitudes are undone by 
the noise increase inherent to operating in the nonlinear regime. 
Here we address this fundamental limitation by demonstrating a 
general mechanism for stabilizing the oscillation frequency of non-
linear self-sustaining micro- and nano-mechanical resonators. This 
is achieved by coupling two different vibrational modes through an 
internal resonance, where the energy exchange between modes is 
such that the resonance of one mode absorbs the amplitude and fre-
quency fluctuations of the other, effectively acting as a stabilizing 
mechanical negative feedback loop.

Results
Internal resonance condition in a clamped–clamped beam. The 
dynamics of a c–c beam can be approximated by that of a mass-
spring system with a nonlinear restoring force Fr =  − k1x − k3x3, 
where x is the displacement of the centre of the beam, k1 is a linear 
elastic constant, and k3 is a nonlinear elastic constant caused by the 
elongation of the beam as it moves laterally22. In the case of damped, 
harmonically driven oscillations, the equation of movement is then 
given by the Duffing equation 
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where meff is the effective mass, c is the damping constant, and 
F0cos(ωt) is the driving force with amplitude F0 and frequency 
f = ω/2π. In the case of a c–c beam, k3 is positive and the typical 
resonance curves, calculated by solving equation 1, are shown in 
Fig. 1a for different driving forces.

A scanning electron microscopy image of a typical clamped–
clamped oscillator studied in our experiment is presented in  
Fig. 1b: it consists of interconnected beams with lateral comb-drive 

(1)(1)

electrodes for actuation and detection. In Fig. 1c, we plot several 
resonance amplitude curves measured with the c–c beam resona-
tor shown in Fig. 1b. All the measurements presented in this work 
are at room temperature and in vacuum (pressure of 10 − 5 mbar). 
The electrostatic actuation and detection is implemented with  
lateral capacitive comb-drive electrodes and the driving force is 
generated by applying an electric voltage ν(t) = νdc + νacsin(ωt) to 
one of the comb-drive electrodes, where νdc is a dc voltage and 
νac is the amplitude of the applied ac voltage. In the four curves  
corresponding to driving voltages νac from 10 to 20 mV, the peak 
frequency increases with the driving strength, as expected in a 
Duffing oscillator. In contrast, the curves corresponding to higher 
driving voltages (40 to 80 mV) all fall to the lower branch at the 
same frequency fir = 67920 Hz. The reason for this is that, at this fre-
quency, the first mode couples to a higher frequency mode through 
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Figure 1 | Clamped–clamped oscillator and open-loop amplitude 
resonance curves. (a) Calculated solutions of the Duffing equation. 
The peak frequency is pulled towards higher frequencies as the driving 
amplitude is increased (a-f effect). For amplitudes larger than a critical 
amplitude, the response follows a hysteresis loop, and multivalued regions 
are formed. When sweeping the driving frequency upwards, the resonant 
curve will follow the upper branch, up to the peak frequency, where it 
jumps down, returning through the lower branch. The points represented 
by the dashed lines are unstable solutions of equation 1 (ref. 18). (b) 
Scanning electron micrograph of a c–c beam resonator with comb-drive 
electrodes for driving and detection. It is composed of three interconnected 
beams, of length l = 500 µm, width w = 3 µm, and thickness t = 10 µm. Scale 
bar, 100 µm. (c) Measured amplitude resonance curves of the c–c beam 
resonator with νdc = 6 V and different values of νac. For νac < 20 mV, the 
peak frequency increases with driving strength, but for the higher driving 
voltages the peak frequency remains constant at fir~67,920 Hz, because of 
the coupling of the first mode with a higher frequency mode through an 
internal resonance.



ARTICLE   

�

nature communications | DOI: 10.1038/ncomms1813

nature communications | 3:806 | DOI: 10.1038/ncomms1813 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

an internal resonance. This higher frequency mode drains mechan-
ical energy from the first mode reducing its amplitude up to the 
point where oscillations at that frequency are unstable, thus causing 
the amplitude to drop to the lower branch of the resonant curve. 
Since the dominant nonlinearity is cubic this higher frequency 
mode is expected to have a frequency three times larger than fir. In 
this situation a strong interaction between the first and the higher  
frequency mode is expected and an internal resonance occurs18. 
When applying larger driving voltages (νac > 400 mV) the amplitude 
curve gets across the internal resonance condition without falling to 
the lower branch, although with a sharp dip at fir (Fig. 2a).

The signal produced by the mode at a frequency 3fir can be 
detected directly by measuring the resonance curve of the first mode 
while simultaneously monitoring the output power spectrum in the 
vicinity of 3fir. These measurements are presented in Fig. 2, show-
ing that the dip in the amplitude curve of the first mode (Fig. 2a)  
corresponds to the resonance peak of the higher frequency mode 
(Fig. 2b). Additionally, we see that the hysteresis in the amplitude 
curve of the first mode (Fig. 2c) is also observed in the higher  
frequency mode resonance curve (Fig. 2d), which appears to have a 
softening nonlinearity.

We ran a modal analysis of the resonator with a finite element 
simulation sofware (Coventorware) to determine which is the mode 
with natural frequency 3fir≈203,760 Hz that couples with the first 
mode at the internal resonance condition (Fig. 3). The simulation 

shows that, taking into account the tolerance of the fabrication proc-
ess, two different modes can have this natural frequency: one is the 
principal flexural out-of-plane mode (mode 2, f≈170 KHz), and the 
other is the principal torsional mode (mode 3, f≈230 KHz). These 
two modes both have an out-of-plane type of motion, and they  
can both be detected capacitively with the comb drive electrodes. 
However, in contrast to the case of the first mode, their capacitive 
variation has twice the frequency of their mechanical oscillations 
and thus the output signal must be detected at double the frequency 
of the driving force (2f detection). Additionally, mode 2 is flexural, 
like the first mode, and should show a hardening nonlinearity due to 
the geometry of the clamped–clamped beam, as the first mode does. 
In contrast, as mode 3 is torsional, it is expected to show a softening 
nonlinearity, if any, due to the electrostatic potential introduced by 
the driving and detection electrodes23. Therefore, as the mode at 3fir 
shows a softening nonlinearity at high amplitudes, we conclude that it 
is mode 3 that couples with the first mode at the internal resonance.

The experimental results presented in Fig. 2 and the finite  
element modal analysis of Fig. 3 show that there is a mode at 3fir  
corresponding to the first out-of-plane torsional mode in this 
device. This mode is expected to show softening nonlinearities due 
to the electrostatic potential introduced by the driving and detection  
voltages in the comb drives23, in agreement with the experimental 
data shown in Fig. 2d.

In brief, when the first mode is driven along the upper branch of 
the nonlinear resonant curve with a frequency fir, an internal reso-
nance occurs. At this frequency, the first mode couples with another 
mode, with natural frequency 3fir, driving it into resonance and 
resulting in a transfer of mechanical energy between the two modes. 
The energy exchange between modes is such that, if the amplitude 
of the second mode increases, it draws energy from the first mode 
and thus decreases its amplitude. Similarly, if the amplitude of the 
second mode decreases, then the amplitude of the first mode is 
increased.

Amplitude and frequency stabilization. The energy transfer 
between modes described in the previous section has a direct impact 
on the amplitude stability of the first mode and can be used as a 
mechanical negative feedback to stabilize both its amplitude and 
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Figure 2 | Internal resonance in a c–c beam resonator. (a) Resonance 
curve of the first mode, with νac = 2 V and νdc = 6 V. There is a sharp dip 
in the upper branch of the amplitude curve at fir, because, at the internal 
resonance condition, part of the mechanical energy of the first mode is 
transferred to a higher frequency mode and, as a result, the amplitude of 
the first mode is reduced. (b) Accordingly, the resonance of the higher 
frequency mode at 3fir produces a peak in the output power spectrum (see 
Methods). No peak is observed in the output power spectrum for driving 
frequencies different than fir or when exciting the first mode along the 
lower branch of the amplitude curve. (c) Detail of the upper branch of the 
first-mode resonance curve, around the internal resonance condition for 
a νac = 2 V (blue line) and νac = 3 V (red line). Here the driving frequency 
is swept through fir while the oscillation amplitudes of (c) the first mode, 
and (d) the higher frequency mode, are simultaneously measured with 
two lock-in amplifiers, with reference signals near fir and 3fir, respectively. 
A change in the amplitude of the first mode corresponds to an opposite 
variation of the amplitude of the higher frequency mode, clearly 
demonstrating the transfer of mechanical energy between the modes  
at the internal resonance condition.
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Figure 3 | Modal analysis of the clamped–clamped beam resonator. 
Images of the modal displacement of the c–c resonator shown in Fig. 1b. 
The images were obtained using the finite element method simulation 
software, Coventorware. The calculated resonant frequencies of the 
different modes are: (a) principal in-plane flexural mode, 68,444 Hz;  
(b) principal out-of-plane flexural mode, 170,173 Hz; (c) principal torsional 
mode, 230,108 Hz and (d) in-plane antisymmetric mode: 293,352 Hz. 
These images are indicative of the dynamic behaviour of the different 
modes and should not be used to compare relative modal displacement.
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frequency. To qualitatively understand how this works, let’s assume 
that the resonator is in the internal resonance condition, with the 
first mode oscillating in the upper branch of the resonance curve 
and the higher frequency mode oscillating just below its resonant 
frequency at 3fir, driven by the oscillations of the first mode. At this 
point, if fluctuations increase the amplitude of the first mode, then its 
frequency also increases owing to the a-f effect. This drives the higher 
frequency mode oscillation closer to the peak of its resonance, and 
thus its amplitude increases. As a result, more energy is drawn from 
the first mode, decreasing its amplitude and frequency, thus effectively 
opposing the increase in amplitude and frequency produced by noise. 
On the other hand, if the amplitude of the first mode decreases, then 
its frequency also decreases. This moves the frequency of the higher 
frequency mode oscillation away from the resonance peak, thus 
decreasing its amplitude. Consequently, less energy is drawn from the 
first mode and its amplitude and frequency increase. In other words, 
the higher frequency mode is effectively stabilizing the amplitude and 
frequency fluctuations of the first mode.

A simple theoretical description of the proposed stabilization 
mechanism can be obtained by introducing a coupling term into 
the Duffing equation, equation 1, and by adding a second equa-
tion describing the high-frequency mode dynamics. This simple 
set of equations can be solved analytically, providing a convincing 
theoretical analysis for the negative feedback effect responsible for 
stabilizing the oscillator’s frequency (Supplementary Figure S1). 
This model for the dynamics of the modes and their interaction is  
presented in the Supplementary Methods.

To verify experimentally this internal mechanical stabilization 
mechanism, we drive the resonator in a closed loop configura-
tion, where the oscillations are self-sustained at ~500 Hz below fir  
(Fig. 4a). Then we start increasing νac to reach the internal reso-
nance condition, and for each value of νac we measure the frequency 
of oscillations as a function of time for 120 s, using an averaging 
time of 0.1 s for each point. From these measurements, we calculate 
the mean frequency and the standard deviation of the frequency as 
a function of νac.

For driving voltages lower than 20 mV, the mean frequency 
and the oscillation amplitude increase with voltage (Fig. 4b,c), as 
expected in a Duffing resonator. In this driving range, the noise 
in the frequency also increases with voltage (Fig. 4d), because the 
oscillator becomes more nonlinear and thus the a-f effect increases.

At νac = 20 mV, both the frequency and the amplitude values  
levels off and remain constant as νac is further increased  
(Fig. 4b,c). This is the onset of the internal resonance condition, 
where the high-frequency mode couples with the first mode and  
stabilizes both its amplitude and frequency of oscillation. Conse-
quently, as shown in Fig. 4d, the frequency fluctuations drop sub-
stantially, from 1.75 Hz to 4 mHz at νac = 40 mV, almost 400 times,  

giving a frequency stability 1
1 1

2
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Fig. 4e, we plotted the instantaneous frequency variation versus 
time curve for νac = 40 mV, showing the excellent frequency stability 
over times of several minutes. The short-term frequency fluctuation 
of our oscillator, working deep in the nonlinear regime, is compara-
ble to state-of-the-art MEMS/NEMS linear oscillators9,24,25.

When the driving amplitude is further increased, the end of the 
internal resonance condition is reached. At that point, the high-fre-
quency mode stops opposing the amplitude and frequency increase 
of the first mode, and the frequency jumps to the value expected 
for the Duffing resonator. Additionally, as the stabilizing action of 
the high-frequency mode is no longer in effect, the frequency noise 
increases abruptly.

Additional information about the frequency noise can be obtained 
by analysing the Allan deviation outside and inside the internal res-
onance condition. In Fig. 4d, the stabilization mechanism is dem-

onstrated by measuring the standard deviation of the frequency, as 
the driving voltage is increased and the oscillator enters the internal 
resonance condition. A more complete description of the noise in 
the oscillator is given by the fractional frequency fluctuations aver-
aged over an interval τ, as a function of that averaging time τ. This is 
known as the Allan deviation σy(τ) and can be expressed as 
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where yi
t  are the relative frequency fluctuations averaged over  

the ith discrete time interval of τ. In Fig. 5a, we show the Allan 
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Figure 4 | Frequency stabilization of the self-sustaining oscillator.  
(a) Circuit schematic of the c–c resonator in a closed loop configuration 
that maintains the self-sustained oscillations (see Methods). (b) Mean 
frequency of the first-mode oscillations. The frequency versus driving 
amplitude curve flattens, when the internal resonance condition is reached 
at fir. (c) Amplitude of the first-mode oscillations. Similarly to what 
happens to the frequency, the amplitude versus driving force curve flattens 
when the internal resonance condition is reached at fir. The amplitude 
in millivolts may differ from that of the open loop curves of Fig. 1c owing 
to different settings in the current preamplifier and lock-in amplifier 
gains. (d) Standard deviation of the self-sustaining oscillator’s frequency 
(on a logarithmic scale), showing how the frequency fluctuations are 
substantially reduced, once the internal resonance condition is reached. 
(e) Frequency variation ∆f = f − fmean at the internal resonance condition 
(fmean = fir), measured using an averaging time of 0.1 s. Through an interval 
of 600 s, the standard deviation of the frequency, measured in units of 
parts per million, is 0.06 p.p.m. (red lines), when νac = 40 mV. All the 
measurements are at room temperature and in a vacuum of 10 − 5 mbar.
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deviation of the oscillator at the internal resonance condition 
(νac = 40 mV). It can be observed that the behaviour of the curve is 
as expected in a mechanical oscillator: for short averaging times, the 
deviation diminishes with the averaging time (up to ~10 s), because 
the fluctuations are dominated by white noise, and for longer times 
the deviation increases with averaging time, because the noise proc-
ess is dominated by random walk of frequency. In Fig. 5b, we show 
the Allan deviation for the oscillator inside (νac = 40 mV) and out-
side (νac = 15 mV) the internal resonance condition, clearly showing 
the frequency stabilization obtained with this mechanism.

The frequency noise is induced by undesired forces that affect 
both the amplitude and, through the a-f effect, the frequency of the 
oscillations. Examples of these forces are the noise in the driving 
voltage, variations in pressure and temperature, random vibrations 
and/or contamination of the resonator element. The internal reso-
nance mechanism reduces the sensitivity of the oscillation amplitude 
to all of these force fluctuations. If additional stabilization methods 
are used, such as temperature compensation, then the effects of 
reducing the noise in the external forces and of using the internal 
resonance stabilization will be additive. The former will reduce the 
fluctuations in the forces affecting the oscillation amplitude and the 
latter will reduce the sensitivity of the oscillation amplitude to these 
fluctuations.

Discussion
The method presented in this work, for stabilizing the frequency of 
oscillation through the coupling of modes in the internal resonance 
condition, could be applied to a wide range of micro- and nano-
mechanical oscillators. We observed, in other similar resonators, 
that the coupling can be obtained not only with the torsional mode 
but also with the out-of-plane flexural mode (Supplementary Fig. 
S2), which makes the design easy to implement in c–c beam resona-
tors. For instance, in a single c–c beam with length l, width w and 
thickness t, the resonant frequency of the first flexural mode that 
oscillates in the direction of w is w r1 = 6.47 2

E w
L

 (ref. 26), where E is 
the Young modulus, ρ is the density of the beam, and L is the length 
of the beam. Similarly, the mode that oscillates in the direction of  
t has a resonant frequency w r2 6 47 2= . E t

L
 and thus ω2/ω1 = t/w. 

Therefore, to obtain an internal resonance, we just need that t > 3w 
so that ω2 > 3ω1 and thus, by driving the first mode with an appro-

priate force, the first mode can be made to resonate at a frequency 
equal to (1/3)ω2. Using the fact that at the internal resonance condi-
tion, the peak frequency satisfies fp(νac) = fir, the value of νac needed 
to achieve the internal resonance conditions can be predicted. The 
limitations in the driving force and in the attainable frequency 
detuning of the first mode will set the upper limit for the difference 
between ω1 and (1/3)ω2. This reasoning holds independently of the 
frequency or size of the resonator and thus this stabilization method 
could in principle be applied to high-frequency MEMS and NEMS, 
in which the linear dynamic range imposes severe limitations to the 
signal-to-noise ratio, allowing large displacements with excellent 
frequency stability. To verify this, future experiments should focus 
on applying the stabilization method to high-frequency nanoscale 
resonators.

In conclusion, we presented a frequency stabilization mecha-
nism that is intrinsic to self-sustained micromechanical resona-
tors operating in the nonlinear regime. This mechanism provides 
a new strategy for further optimization and engineering of micro- 
and nano-scale devices and demonstrates that very low-frequency 
noise performance is possible in the nonlinear regime. The most 
straightforward application of this mechanism will be in the broad 
field of miniaturized mechanical oscillators for frequency refer-
ences, but it can also be used in frequency-shift-based detectors. For 
this, the same configuration showed here should be used. With the 
first mode stabilized at fir, the device is sensitive to variations in the  
resonant frequency of the higher frequency mode, induced, for 
example, by changes in mass or force. This is so because these  
variations modify the value of fir and thus the frequency of the self- 
sustained oscillations of the low frequency mode. In this way, the 
resonant frequency of the high-frequency mode, which is linear 
and has good stability but has low amplitude, could be followed 
by detecting the nonlinear low frequency mode, which has a much  
larger amplitude, increasing the signal-to-noise ratio. Finally, further 
applications of the internal resonance phenomenon in MEMS and 
NEMS can be imagined, such as in mechanical energy storage with 
resonators27, where energy input at low frequencies could be stored 
in higher frequency modes, thus using the multiple degrees of free-
dom of the resonator to extend its energy storage capacity.

Methods
Amplitude detection of the two coupled modes. Both modes were measured 
capacitively with the same comb-drive electrodes. The first mode is the principal 
in-plane flexural mode, and the capacitance variation of the electrodes has the 
same frequency than the mechanical oscillations. The higher frequency mode is 
the principal out-of-plane torsional mode and, in this case, the capacitance vari-
ation has twice the frequency of the mechanical oscillations. Consequently, while 
the driving frequency is swept in the vicinity of the internal resonance frequency 
fir¸ the spectrum analyser frequency span is centred at 6fir. In this way, the output 
spectrum corresponding to the oscillations of the higher frequency mode at 3fir are 
detected.

In order to simultaneously measure both coupled modes with two different 
lock-in amplifiers, a reference signal near 6fir is used for the high-frequency lock-in 
to detect the oscillations of the higher frequency mode at 3fir. This reference signal 
is also input into a frequency divider by six and used as the reference for the low 
frequency lock-in, in the vicinity of fir. Additionally, this signal is used to drive the 
resonator and sweep the resonance curve of the first mode around fir.

MEMS resonator detection and actuation. The motion of the resonator is  
detected capacitively. The capacitance variation of the voltage-biased comb-drive 
electrode generates a current that is introduced into a current amplifier. This ampli-
fier produces a voltage output, proportional to the oscillation amplitude, which 
is first phase shifted with an active analogue implementation of an all-pass filter 
and then used as input of the phase-locked loop in the lock-in amplifier (external 
reference input). The reference output of the lock-in amplifier is phase locked to 
the input reference, and its amplitude is set by the internal function generator to 
the specified value. Thus, the resulting signal at the output of the phase-locked 
loop is phase locked to the detection signal but phase shifted and with a constant 
amplitude that can be set independently of the amplitude of the oscillations. This 
resulting signal is used to drive the resonator and to measure the frequency of the 
oscillations with a digital frequency counter. The phase shift between the excitation 
and the detection signal determines the point in the resonance curve, where the 
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Figure 5 | Allan deviation of the micromechanical oscillator. (a) Inside 
the internal resonant condition (νac = 40 mV), showing a white noise 
type for averaging times up to 10 s, and random walk frequency noise for 
higher averaging times. (b) Outside (νac = 15 mV) and inside (νac = 40 mV) 
the internal resonance condition, showing the effect of the stabilization 
mechanism.
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resonator is phase-locked. For instance, to operate the oscillator in the peak of the 
resonance curve, the phase shift must be set to  − π/2. This is the working point 
that we used because, for a given driving strength, the amplitude of oscillation is 
maximum. 
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